

Order Information	Batch Informatio	n		
Sample Name:	Batch ID:			
Sample Type:	Sample ID:	Sample ID:		
Date Collected:	Lot No.:			
Report Type:	Lot Size:			
Company Info:				
	Total THC To	otal CBD Total Cannabinoids		
Heavy Metals	Pesticides	Microbes		
Solvents	Mycotoxins	Water Activity		
Filth	Moisture	Terpenes		
OCM Permit No OCM-CPL-2022-00012	Brandy Goung	Ggamana		

Testing results are based solely upon the sample submitted to the lab and in the condition it was received. Certainty Analytical Labs, Corp. warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices, as determined by the New York Office of Cannabis Management (Cannabis Laboratory Quality System Standard." New York State, Office of Cannabis Management, 2023). Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials.

MANAGED BY: Brandy Young, PhD (Lab Director)

DATE

AMENDED CERTIFICATE OF ANALYSIS

DATE

HC HC	Submitte Started: Reported Collection LOQ (PPM) 1.0 1.0	1 :			RESULT (moisture corrected) (mg/serving)	
HC OTHC	Collectic	on time:			(moisture corrected)	(moisture correcte
HC OTHC	LOQ (PPM)	on time:			(moisture corrected)	(moisture correcte
HC OTHC	LOQ (PPM)	RESULT			(moisture corrected)	(moisture correcte
HC OTHC	(PPM) 1.0				(moisture corrected)	(moisture correcte
HC OTHC	(PPM) 1.0				(moisture corrected)	(moisture correcte
тнс отнс	COMPOUND (PPM) (mg/serving) (%w/w) (mr/stat THC = (THCA-A* (0.877)) + Δ9THC + Δ8THC + RS-Δ10THC + RR-Δ10THC Total TMC = (THCA-A* (0.877)) + CBD = None Detected Δ9THC 1.0 Δ9THC 1.0 Δ8THC 1.0		(%w/w)			
отнс	1.0					
отнс	1.0					
51110	1.0					
A-A	1.0					
cv	1.0					
D	1.0					
DA	1.0					
)V	1.0					
N G	1.0				_	
GA	1.0					
C	1.0					
		mq/ser	ving	%w/w	ma/ser	rving %
				%w/w		
 . CBD **		mg/ser	ving	%w/w	mg/ser	rving %
	%MOISTURE &	MOISTURE CORRE	CTED VALUES	Pass	Fail	N/A
	SAMPLE % MC	DISTURE CONTENT**	•			
vas AME	ENDED beca	ause the lot size	e was conv	erted fro	m unit count	to grams.
	L THC **	%MOISTURE & SAMPLE % MC	### MOISTURE & MOISTURE CORRECT SAMPLE % MOISTURE CONTENT*** WAS AMENDED because the lot size	L THC ** mg/serving L CBD ** mg/serving **MOISTURE & MOISTURE CORRECTED VALUES SAMPLE % MOISTURE CONTENT*** was AMENDED because the lot size was conve	L THC ** mg/serving %w/w L CBD ** mg/serving %w/w %MOISTURE & MOISTURE CORRECTED VALUES Pass SAMPLE % MOISTURE CONTENT***	L THC ** mg/serving %w/w mg/ser L CBD ** mg/serving %w/w mg/ser %MOISTURE & MOISTURE CORRECTED VALUES Pass Fait SAMPLE % MOISTURE CONTENT*** was AMENDED because the lot size was converted from unit count

Testing results are based solely upon the sample submitted to the lab and in the condition it was received. Certainty Analytical Labs, Corp. warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices, as determined by the New York Office of Cannabis Management (Cannabis Laboratory Quality System Standard." New York State, Office of Cannabis Management, 2023). Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials.

MANAGED BY: Brandy Young, PhD (Lab Director)

Date Released: 2/21/2024 1:10:04PM

Report #: 11416

20240213.1.002

Sample #: 3843, Weight: 35.20g, Unit Count:

Order #: X240213-0003

Category/Type: Plant, Flower - Cured Date Collected: 2/13/2024 8:13:20PM Date Received: 2/13/2024 8:36:55PM Regulator Sample ID: Jealously Regulator Source Package ID: Jealously

Regulator Batch ID: Jealously Size: Not Provided, Unit Count:

3.5 %

PASS

PASS

PASS

PASS

PASS

Terpenes by HS-GC-MS	C-MS Humulene Limonene				Date Completed: 02/16/2024 12:12Pl		
Compound	CAS#	LOQ (%)	%	Relative Concentration			
Farnesene	502-61-4	0.1000	1.197				
Beta-caryophyllene	87-44-5	0.1000	1.124				
Alpha-humulene	6753-98-6	0.1000	0.4011				
Limonene	5989-27-5	0.1000	0.3420				
Valencene	4630-07-3	0.1000	0.1479				
Alpha-cedrene	469-61-4	0.1000	0.1315				
Beta-myrcene	123-35-3	0.1000	0.1081				
Alpha-pinene	80-56-8	0.1000	ND				
Linalool	78-70-6	0.1000	ND				
Beta-pinene	127-91-3	0.1000	ND				
Terpinolene	586-62-9	0.1000	ND				

This product has been tested by KST using valid testing methodologies and a quality management system required by law. Values reported relate only to the product tested. KST makes no claim as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compound reported herein.

If sampled by Keystone State Testing, sampling followed SOP-P-NY500 at the client facility listed above.

Keystone State Testing of New York 1809 Vestal Pkwy E

Vestal, NY 13850 (607)301-0884 InfoNY@KeystoneStateTesting.com www.KeystoneStateTesting.com Permit #: OCM-CPL-2022-00007

Sample #: 3843 20240213.1.002

Compound	CAS#	LOQ (%)	%	Relative Concentration
Borneol	464-45-9	0.1000	ND	
Ocimene	13877-91-3	0.1000	ND	
Alpha-bisabolol	515-69-5	0.1000	ND	
Caryophyllene-oxide	1139-30-6	0.1000	ND	
Geraniol	106-24-1	0.1000	ND	
Camphene	79-92-5	0.1000	ND	
Guaiol	489-86-1	0.1000	ND	
Alpha-terpinene	99-86-5	0.1000	ND	
Terpineol	8006-39-1	0.1000	ND	
Fenchol	14575-74-7	0.1000	ND	
Alpha-phellandrene	99-83-2	0.1000	ND	
Camphor	464-49-3	0.1000	ND	
3-Carene	13466-78-9	0.1000	ND	
Cedrol	77-53-2	0.1000	ND	
Eucalyptol	470-82-6	0.1000	ND	
Fenchone	1195-79-5	0.1000	ND	
Gamma-terpinene	99-85-4	0.1000	ND	
Geranyl Acetate	105-87-3	0.1000	ND	
Isopulegol	89-79-2	0.1000	ND	
Menthol	15356-70-4	0.1000	ND	
Nerol	106-25-2	0.1000	ND	
Nerolidol		0.1000	ND	
Pulegone	89-82-7	0.1000	ND	
Sabinene	3387-41-5	0.1000	ND	
Sabinene Hydrate	546-79-2	0.1000	ND	

This product has been tested by KST using valid testing methodologies and a quality management system required by law. Values reported relate only to the product tested. KST makes no claim as to the efficacy, safety or other risks

associated with any detected or non-detected levels of any compound reported herein. If sampled by Keystone State Testing, sampling followed SOP-P-NY500 at the client facility listed above.

Keystone State Testing of New York 1809 Vestal Pkwy E

Vestal, NY 13850 (607)301-0884 InfoNY@KeystoneStateTesting.com www.KeystoneStateTesting.com Permit #: OCM-CPL-2022-00007

Kelly N Guela

Sample #: 3843 20240213.1.002

Foreign Matter by Microscopy	Pass	i	Analysis Date	e: 02/20/2024 9:34 am
Compound	LOQ (%)	Limits (%)	Result (%)	Status
% Foreign Matter	0.00100	2.0	ND	Pass
Mammalian Exreta	0.00100	0.03	ND	Pass
Stems	0.00100	5.0	ND	Pass
Comment: Physical chemistry was tested using moisture analyzer, w	ater activity meter using P-NY 16	0. Unless otherwise stated, all QC passed.		

Water Activity		Pass	,	Analysis Date: 02/20/2024 9:34	
Con	npound	LOQ (Aw)	Limits (Aw)	Result (Aw)	Status
Wat	er Activity	0.05	0.65	0.43	Pass
Comment	Physical chemistry was tested using moisture analyz	er, water activity meter using P-NY 16	60. Unless otherwise stated, all QC passed	l.	

Pesticides by LCMSMS	icides by LCMSMS Pass		Analysis Date:	02/19/2024 4:22 pm
Compound	LOQ (μg/g)	Limits (μg/g)	Result (µg/g)	Status
Abamectin	0.0100	0.500	ND	Pass
Acephate	0.0100	0.400	ND	Pass
Acequinocyl	0.0100	2.00	ND	Pass
Acetamiprid	0.0100	0.200	ND	Pass
Aldicarb	0.0100	0.400	ND	Pass
Azadirachtin	0.0100	1.00	ND	Pass
Azoxystrobin	0.0100	0.200	ND	Pass
Bifenazate	0.0100	0.200	ND	Pass
Bifenthrin	0.0100	0.200	ND	Pass
Boscalid	0.0100	0.400	ND	Pass
Captan	0.0100	1.00	ND	Pass
Carbaryl	0.0100	0.200	ND	Pass
Carbofuran	0.0100	0.200	ND	Pass
Chlorantraniliprole	0.0100	0.200	ND	Pass

This product has been tested by KST using valid testing methodologies and a quality management system required by law. Values reported relate only to the product tested. KST makes no claim as to the efficacy, safety or other risks

If sampled by Keystone State Testing, sampling followed SOP-P-NY500 at the client facility listed above.

Keystone State Testing of New York 1809 Vestal Pkwy E

Vestal, NY 13850 (607)301-0884 InfoNY@KeystoneStateTesting.com www.KeystoneStateTesting.com Permit #: OCM-CPL-2022-00007

Kelly N Guela

Sample #: 3843 20240213.1.002

sticides by LCMSMS	Pass	•	Analysis Date: 02/19/2024 4:22 p	
Compound	LOQ (μg/g)	Limits (μg/g)	Result (μg/g)	Status
Chlordane-alpha	0.0100	1.00	ND	Pass
Chlorfenapyr	0.0100	1.00	ND	Pass
Chlormequat Chloride	0.0100	1.00	ND	Pass
Chlorpyrifos	0.0100	0.200	ND	Pass
Clofentezine	0.0100	0.200	ND	Pass
Coumaphos	0.0100	1.00	ND	Pass
Cyfluthrin	0.0100	1.00	ND	Pass
Cypermethrin	0.0100	1.00	ND	Pass
Daminozide	0.0100	1.00	ND	Pass
Diazinon	0.0100	0.200	ND	Pass
Dichlorvos	0.0100	1.00	ND	Pass
Dimethoate	0.0100	0.200	ND	Pass
Dimethomorph	0.0100	1.00	ND	Pass
Ethoprophos	0.0100	0.200	ND	Pass
Etofenprox	0.0100	0.400	ND	Pass
Etoxazole	0.0100	0.200	ND	Pass
Fenhexamid	0.0100	1.00	ND	Pass
Fenoxycarb	0.0100	0.200	ND	Pass
Fenpyroximate	0.0100	0.400	ND	Pass
Fipronil	0.0100	0.400	ND	Pass
Flonicamid	0.0100	1.00	ND	Pass
Fludioxonil	0.0100	0.400	ND	Pass
Hexythiazox	0.0100	1.00	ND	Pass
Imazalil	0.0100	0.200	ND	Pass
Imidacloprid	0.0100	0.400	ND	Pass
Indolebutyric Acid	0.0100	1.00	ND	Pass

This product has been tested by KST using valid testing methodologies and a quality management system required by law. Values reported relate only to the product tested. KST makes no claim as to the efficacy, safety or other risks

If sampled by Keystone State Testing, sampling followed SOP-P-NY500 at the client facility listed above.

Keystone State Testing of New York 1809 Vestal Pkwy E

Vestal, NY 13850 (607)301-0884 InfoNY@KeystoneStateTesting.com www.KeystoneStateTesting.com Permit #: OCM-CPL-2022-00007

Kelly N. Greelen

Sample #: 3843 20240213.1.002

sticides by LCMSMS	Pass	•	Analysis Date	Analysis Date: 02/19/2024 4:22		
Compound	LOQ (μg/g)	Limits (µg/g)	Result (μg/g)	Status		
Kresoxim-methyl	0.0100	0.400	ND	Pass		
Malathion	0.0100	0.200	ND	Pass		
Metalaxyl	0.0100	0.200	ND	Pass		
Methiocarb	0.0100	0.200	ND	Pass		
Methomyl	0.0100	0.400	ND	Pass		
Methyl Parathion	0.0100	0.200	ND	Pass		
Mevinphos	0.0100	1.00	ND	Pass		
MGK-264	0.0100	0.200	ND	Pass		
Myclobutanil	0.0100	0.200	ND	Pass		
Naled	0.0100	0.500	ND	Pass		
Oxamyl	0.0100	1.00	ND	Pass		
Paclobutrazol	0.0100	0.400	ND	Pass		
Pentachloronitrobenzene	0.0100	1.00	ND	Pass		
Permethrins, Total	0.0100	0.200	ND	Pass		
Phosmet	0.0100	0.200	ND	Pass		
Piperonyl Butoxide	0.0100	2.00	ND	Pass		
Prallethrin	0.0100	0.200	ND	Pass		
Propiconazole	0.0100	0.400	ND	Pass		
Propoxur	0.0100	0.200	ND	Pass		
Pyrethrins Total	0.0100	1.00	ND	Pass		
Pyridaben	0.0100	0.200	ND	Pass		
Spinetoram Total	0.0100	1.00	ND	Pass		
Spinosad Total	0.0100	0.200	ND	Pass		
Spiromesifen	0.0100	0.200	ND	Pass		
Spirotetramat	0.0100	0.200	ND	Pass		
Spiroxamine	0.0100	0.200	ND	Pass		

This product has been tested by KST using valid testing methodologies and a quality management system required by law. Values reported relate only to the product tested. KST makes no claim as to the efficacy, safety or other risks

If sampled by Keystone State Testing, sampling followed SOP-P-NY500 at the client facility listed above.

Keystone State Testing of New York 1809 Vestal Pkwy E

Vestal, NY 13850 (607)301-0884 InfoNY@KeystoneStateTesting.com www.KeystoneStateTesting.com Permit #: OCM-CPL-2022-00007

Kelly N. Greelen

Sample #: 3843 20240213.1.002

Pesticides by LCMSMS	Pass	,	Analysis Date: 02/19/2024 4:22 pm				
Compound	LOQ (µg/g)	Limits (μg/g)	Result (μg/g)	Status			
Tebuconazole	0.0100	0.400	ND	Pass			
Thiacloprid	0.0100	0.200	ND	Pass			
Thiamethoxam	0.0100	0.200	ND	Pass			
Trifloxystrobin	0.0100	0.200	ND	Pass			
Comment: Pesticides tested by LCMSMS by using P-NY150. Uni	•						

Mycotoxins by LCMSMS	Pass	3	Analysis Date: 02/19/2024 4:22 pm		
Compound	LOQ (µg/g)	Limits (µg/g)	Result (μg/g)	Status	
Aflatoxin B1	0.0050	0.020	ND	Pass	
Aflatoxin B2	0.0050	0.020	ND	Pass	
Aflatoxin G1	0.0050	0.020	ND	Pass	
Aflatoxin G2	0.0050	0.020	ND	Pass	
Ochratoxin A	0.0050	0.020	ND	Pass	
Total Aflatoxin	0.0050	0.020	ND	Pass	
Comment: Mycotoxin contamination tested by LCMSMS using P-NY	125. Unless otherwise stated, all	QC passed.			

	Pass		Analysis Date: 02/15/2024 12:02 p	
LOQ (µg/g)	Limits (µg/g)	Result (μg/g)	Status	
0.0100	2.00	ND	Pass	
0.00100	0.200	0.0114	Pass	
0.00150	0.300	0.0355	Pass	
0.280	110	ND	Pass	
0.0750	30.0	14.0	Pass	
0.00250	0.500	0.0258	Pass	
0.000500	0.100	ND	Pass	
0.0100	5.00	1.36	Pass	
	0.0100 0.00100 0.00150 0.280 0.0750 0.00250 0.000500	0.0100 2.00 0.00100 0.200 0.00150 0.300 0.280 110 0.0750 30.0 0.00250 0.500 0.000500 0.100	0.0100 2.00 ND 0.00100 0.200 0.0114 0.00150 0.300 0.0355 0.280 110 ND 0.0750 30.0 14.0 0.00250 0.500 0.0258 0.000500 0.100 ND	

This product has been tested by KST using valid testing methodologies and a quality management system required by law. Values reported relate only to the product tested. KST makes no claim as to the efficacy, safety or other risks

If sampled by Keystone State Testing, sampling followed SOP-P-NY500 at the client facility listed above.

Keystone State Testing of New York 1809 Vestal Pkwy E

Vestal, NY 13850 (607)301-0884 InfoNY@KeystoneStateTesting.com www.KeystoneStateTesting.com Permit #: OCM-CPL-2022-00007

Kelly N. Greelen

Certainty

License #: ocmppII-2023-000012

Certificate of Analysis

Final

CERTAINTY ANALYTICAL LABS

Sample #: 3843 20240213.1.002

Comment: Heavy Metal contamination tested by ICPMS using P-NY140. Unless otherwise stated, all QC passed.

Pass		Analysis Date: 02/16/2024 12:17	
LOQ (CFU/g)	Limits (CFU/g)	Result (CFU/g)	Status
1	0	Not Detected	Pass
1	0	Not Detected	Pass
1	0	Not Detected	Pass
1	0	Not Detected	Pass
1	0	Not Detected	Pass
1	0	Not Detected	Pass
10		110000	Pass
10		70000	Pass
	LOQ (CFU/g) 1 1 1 1 1 1 1 1 1 1 1 1 1	LOQ (CFU/g) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	LOQ (CFU/g) Limits (CFU/g) Result (CFU/g) 1 0 Not Detected 10 110000

This product has been tested by KST using valid testing methodologies and a quality management system required by law. Values reported relate only to the product tested. KST makes no claim as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compound reported herein.

If sampled by Keystone State Testing, sampling followed SOP-P-NY500 at the client facility listed above.

Keystone State Testing of New York 1809 Vestal Pkwy E

Vestal, NY 13850 (607)301-0884 InfoNY@KeystoneStateTesting.com www.KeystoneStateTesting.com Permit #: OCM-CPL-2022-00007 Kelly N Guela

